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ELEMENTARY WAVES AND RIEMANN SOLUTIONS:
THEIR THEORY AND THEIR ROLE IN SCIENCE

J. Glimm^'^'^

Courant Institute of Mathematical Sciences

New York Univtrsity

New York, N.Y. 10012

ABSTRACT

Elementary waves and Riemann solutions are solutions of a non-

linear conservation law which are distinguished by symmetry proper-

ties. In this paper we discuss the theory of elementary waves and

Riemann solutions with an emphasis on general concepts and open

problems. The importance of these solutions to science will also be

discussed.
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1. Introduction

Elementaxy waves and Riemann solutions are solt^dons of a nonlinear system

of conservation laws

«, + V./(«) = (1.1)

which are distinguished by symmetry properties. We take (1.1) to be an n x n sys-

tem, considered in d space variables. A Riemann solution is a solution u of (1.1)

which is invariant under the scale transformation i,t -> si, st , s > d . An elementary

wave with velocity d € /?^ is a Riemann solution which is invariant under the group

action ;f , r - jf + 6t, r + t . Equivalently these solutions are transformed into a sta-

tionary solution (m, = 0) by a Galilean transformation ^, f - |, r je - dr, r . The

elementary waves and Riemann solutions are S9i(>: to have co-dimension j if they are

independent of all but j of their space coordinates.

Let A = 4^ be the Jacobean matrix of ^. T* ',n (1.1) is byaevbolic if the n x n
du

matrix A -I has real eigenvalues X^, • •
, X„ for each | € ^'^ and it is stricdy hyper-

bolic if the \j are furthermore distinct. Since A = A(u) and \j = Xy(u,^) depend on

the point u in the state space (which is some dosaain ccL..:^^cd in /?"), we can speak

of both local properties (such as local hyperbolicity) and global properties. The

local properties are then valid for all u in some neighborhood of some u^ while the

global properties are valid for all u in the state space. The eigenvalues X(u,|) are

the characteristic speeds or the wave speeds for propagation of disturbances of

infinitesimal size in the direction |. This is the same as saying that they are the

speeds of the system

w, + {Ai) (fV)»v = . (1.2)

which is the linearization of (1.1) about the constant solution u{i,i) ^ u i R„. Simi-

larly the right eigenvectors ej = ey(u,|) of X(t<)-| are the normal modes for the

linearized system (1.2). See also [8,9] for a further discussion of these concepts.
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2. Solution Singularities

The necessary occurance of solution singularities is the most interesting

phenomenon associated with nonlinear conservation laws such as (1.1). It is

remarkable that smooth data does not force and usually does not allow smooth solu-

tions. Jump discontinuities form spontaneously in the solutions to (1.1). The clas-

sification of the allowed discontinuities and their interactions is an important and

probably central aspect of the qualitative understanding of general solutions.

The elementary waves are an idealized form of the solution discontinuities.

The idealization is to perform an infinite limit of scale transformations in a neigh-
..ju ?. t.

borhood of a discontinuity. The result of this limit is a scale invariant solution of

(1.1) with the same discontinuity. The discontinuity propagates with a definite velo-

city without change of form, and thus is an elementary wave. A simple jump

discontinuity has co-dimension one, and the generic intersection point of j jump

discontinuities has co-dimension 0' knd ^i^n^ a co-dimension j elementary wave.

Usually more than the minumum number j of jump discontinuities are involved in a

co-dimension j elementary wave,
,^^

The interaction of discontinuities is an isolated event in time. The idealization

of the infinite scaling limit can still be performed, and yields a scale invariant solu-

tion. However the result is a discontinuity which occurs as a single instant of time,

and which docs not preserve its form by moving coherently with a definite velocity.

Thus we have a Riemann solution rather than an elementary wave. The

corresponding Cauchy data is known as a Riemann problem, and it defines in ideal-

ized form the interaction of elementary waves.

The interaction of discontinuities can be thought of as a scattering problem, and

in this context, the incoming wave operator is the operation of bringing to a com-

mon point in space and time several elementary waves. This data, at t = t^, is a

Riemann problem and its solution, the Riemann solution, for t ^ r^, is the outgoing

wave operator of this scattering problem.
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There is a very simple and appealing picture to describe qualitatively these

Riemann solutions. In fact a Riemann solution of co-dimension j will consist of a

number of elementary waves of co-dimension /, moving apart (scattering) each with

their own distinct velocity. These elementary waves are in turn connected by strings,

surfaces, ..., i. e. by elementary waves of lower co-dimension. A rather satisfac-

tory analysis of the scalar Riemann problem in two space dimensions (n = 1, J = 2)

has been obtained [10,16,17,26] which supports this picture. As discussed in [8], the

phenomena of reverberating [23] or recombiiung [17] waves can give rise to an

infinite or unbounded number of elementary waves (loss or near loss of piecewise

smoothness) if the order, n, or the number of inflections points in a single mode is

not rather small, depending on d.

The same idealization of an infinite scalinf limit ca^ be used to see that the

Riemann solution contains the large time asymptotic; for the solutions defined by a

large class of Cauchy data (the elements of which are asymptotically or eventually

constant on rays at large radii). Complete proofs of..|t|)i|LJlt9f^f.inent for d = \ can be

found in [18,19]. Similarly the next to leading order b.eb^vior in the large time

asymptotics is equivalent to Riemann solutions and Riemann problems with next to

leading order scaling data included. From the known d = I theory, this next to

leading order asymptotics is an ^ wave.

3. The Relation to Science

The conservation laws such as (1.1) arise in a number of problems in physics,

fluid dynamics, chemistry and engineering. It is usually the case that the solution

discontinuities are of special interest in these contexts. We take the basic and much

considered case of the Euler equations for a polytropic gas in </ = 2 space dimen-

sions. There are scientific questions concerning which elementary waves actually

arise in the solution to a given Riemann problem. Mathematical existence and

uniqueness results would probably shed some light on these controversies. See [7]

for a further discussion, where some favorable cases are mentioned for which such

proofs might be tractable.



Even the co-dimension oae Riemann problems do not have a theory which is

adequate to meet the needi of science. Usually the Riemann solution is the first

piece of analysis obtained by an engineer "vtrorking on a problem which can be

modelled by a nonlinear conservation law. The eigenvalues \j and the eigenvectors

ej define a geometry and topology in the state space, and it should be possible to

read off some of the properties of the elementary waves and their interactions from

these considerations. Such a conceptual understanding of the Riemann problem in

the large would be most useful.

4. The Possibilities for a Mathematical Theory

The Riemann solutions have one fewer independent variable than does a gen-

eral solution and the elemenia/jf waves Ifave two fewer. This results in a consider-

able simplification, and means that the chances for an existence theory for Riemann

solutions or elementary waves ir mtich "higher than it is for general data. For exam-

ple the co-dimension three elCtiie^ury waves aire' discussed in [8], and lead to tran-

sonic equations on the two Sjpi&re 5^, or a 'reduction from four to two independent

variables. Because Sobolev atid related inequalities are more favorable in low

dimensions, there is an existence theory for hyperbolic systems of conservation laws

in two independent variables [S]. On this basis we believe that progress can be

made with co-dimension three elementary waves.

The codimension two elementary waves for the Euler equations of a polytropic

gas were classified [7]. Five basic types of elementary waves were found. As with

the co-dimension one Riemann problem, the differential equations in this case

reduce to equations on the circle S^ and have only one independent variable. Thus

the differential equations present no problems from the point of view of local

existence theory and the difficulty is transfered to the need for a global understand-

ing of the wave curves and their geometry and topology in the state space.

For the co-dimension one Riemann problem there is the theory of Lax [IS] for

small data and the theory of Oleinik [21] for scalar equations. There are solutions

known in the large for certain special cases [11,12,14,25]. Recent developments



-6-

[13] suggest that there is an important range of new phenomena, yet to be found in

this area. We regard the co-dimension one Riemann problems, considered in the

large, and the co-dimension two elementary waves as very promising problems for

mathematical progress.

5. Compatational Methods .^ ,

Because the elementary waves and Riemann solutions contain an exact descrip-

tion of the singularities present in a general solution, it is tempting to try to utilize

this knowledge as part of a computational algorithm. Chorin [3] first realized that

Riemann solvers could be used in practical numerical solutions based on the random

choice method [S]. Riemann solvers occur in a number of other algorithms

[1,22,24,27] for numerical solution of systems of conservations laws. This point of

view has received its furthest development in the method of front tracking [2,6,7,8],

whereby a moving co-dimension j grid is used for eacii co-dimension j elementary

wave in the solution, or at least for each of those of sufficient importance to warrant

special consideration. Across this co-dimension /gridi the solution is discontinuous,

and the weak derivatives which occur in the ^uafi6n "(t-l) '^c replaced by their

correct analytic form in terms of jump conditions. In this way, finite difference

quotients are never formed across jump discontinuities.
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